If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-18x-24=0
a = 10; b = -18; c = -24;
Δ = b2-4ac
Δ = -182-4·10·(-24)
Δ = 1284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1284}=\sqrt{4*321}=\sqrt{4}*\sqrt{321}=2\sqrt{321}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{321}}{2*10}=\frac{18-2\sqrt{321}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{321}}{2*10}=\frac{18+2\sqrt{321}}{20} $
| 7−3x=5x+13 | | 6(x+35)=234 | | 13+h=11 | | 11=1g | | (3^x+4)+3^X-1=2205 | | f+(-4)=7 | | x1.8=72 | | f=(-4)=7 | | e/7=1 | | 1/4(4y-1)=2y+1/8 | | 4(2x+1)=3(2x+2) | | 2x+2x=x+95 | | 1.2y=2.75 | | 5n(2n)4(-3)=6(-3)(-1n) | | h.3=19 | | 3+x/5=3.4 | | a.12=19 | | 4x-2+6x=- | | 1/6s-3/69(s-2)=45/2 | | 4x-1+115=180 | | 13=19-2j | | 4s+(2)1/2=(6)1/2 | | 169=x^2+576 | | 3d-13=5 | | y=10,000(0.97)^4 | | 3(4r-1/3)=12r-1 | | 1/3(9-6x)=21 | | x/8=3.14 | | 0.5=0.15/x | | C=1/4n+6 | | 6/8v+2=6 | | x+10+3x+x+2x=360 |